/ lunes 13 de agosto de 2018

Exploran aplicaciones médicas de señales microeléctricas

Con el objetivo de generar aplicaciones que contribuyan al avance de la fisioterapia y las ciencias del deporte, entre otras áreas de la salud, un grupo multidisciplinario de estudiantes y docentes de la Facultad de Ingeniería de la Universidad Autónoma de Querétaro trabaja en la clasificación de señales eléctricas musculares de extremidades superiores.

El Dr. Marco Antonio Aceves Fernández, investigador de la Maestría en Ciencias en Inteligencia Artificial, explicó que las señales mioeléctricas son resultado del movimiento de los músculos. Las contracciones musculares se deben a la frecuencia de impulsos eléctricos que envía el sistema nervioso, lo que produce un intercambio de iones a través de las membranas de las fibras musculares, generando las señales.

Sin embargo, aún cuando dos personas hacen el mismo movimiento -ya sea en piernas, brazos o manos- las señales se comportan de manera distinta; esto se debe a las diferencias entre condición física, edad, fuerza corporal o hasta el tipo de alimentación que llevan.

Puntualizó que la primera fase del proyecto consiste en una serie de pruebas físicas para la adquisición de las señales en el software “Electromiograf Signal Collector EMGSC” (Recolector de Señales Electromiográficas), desarrollado en la Universidad Autónoma de Querétaro. El sujeto de prueba debe realizar cinco repeticiones de 10 movimientos: posición inicial, pronación, supinación, extensión, flexión, desviaciones cubital y radial, pinzas fina y gruesa y expansión.

Para llevar a cabo estos ejercicios y detección de señales, se le coloca en el antebrazo próximo al codo, una pulsera integrada por ocho sensores que se pueden visualizar en el software como ocho canales diferentes. Hasta el momento se ha realizado la prueba en 50 individuos, dando como resultado 128 mil millones de puntos que están en proceso de clasificación.

El Dr. Aceves Fernández indicó que para que software tenga la mayor precisión posible se están probando 12 diferentes métodos de clasificación de inteligencia artificial, con el fin de asegurar cuál es el más efectivo o si es necesario combinar algunos de ellos.

Para clasificar las señales se utiliza el aprendizaje profundo (deep learning), un campo de la Inteligencia Artificial que utiliza las redes neuronales. Estas redes son sistemas de estructuración y procesamiento de datos entrenadas con algoritmos que buscan asemejarse al funcionamiento del cerebro humano para responder a determinados estímulos.

El deep learning es un tipo de aprendizaje no supervisado, es decir, que no necesita de un humano que ayude a la máquina o al software a “aprender” y “pensar” por sí mismo, mediante repeticiones y correcciones. Ejemplos prácticos de ello, son los sistemas de reconocimiento de voz de dispositivos móviles. Lo mismo sucede con el EMGSC, ya que aprende a distinguir un movimiento de otro.

El investigador UAQ explicó que con la clasificación de las señales mioeléctricas buscan incidir directamente en el desarrollo de aplicaciones centradas en áreas de la salud, principalmente. Una de ellas será en la rehabilitación muscular de pacientes que han sufrido problemas motrices causados por accidentes, enfermedades congénitas o afectaciones cognitivas adquiridas. El propósito es dar a los fisioterapeutas datos numéricos precisos que ayuden a la evaluación del paciente.

También podría implementarse en las ciencias del deporte, para evaluar y mejorar el desempeño de un atleta, mediante la corrección de movimientos o del entrenamiento. Mientras que una tercera aplicación estaría enfocada en hospitales inteligentes o centros geriátricos, para que los pacientes puedan controlar ciertos aparatos o dispositivos con movimientos musculares, sin necesidad de depender de un asistente. Por ello, ya están manteniendo pláticas con hospitales para llevar estos avances tecnológicos desarrollados en la UAQ.

El Dr. Marco Aceves detalló que el equipo de trabajo está conformado por estudiantes de la Maestría en Ciencias en Inteligencia Artificial y de la Maestría en Ciencias con línea terminal en Instrumentación y Control Automático; de las ingenierías Física y Biomédica y de la Licenciatura en Fisioterapia, además de la colaboración de un médico alemán experto en bioseñales.

Con el objetivo de generar aplicaciones que contribuyan al avance de la fisioterapia y las ciencias del deporte, entre otras áreas de la salud, un grupo multidisciplinario de estudiantes y docentes de la Facultad de Ingeniería de la Universidad Autónoma de Querétaro trabaja en la clasificación de señales eléctricas musculares de extremidades superiores.

El Dr. Marco Antonio Aceves Fernández, investigador de la Maestría en Ciencias en Inteligencia Artificial, explicó que las señales mioeléctricas son resultado del movimiento de los músculos. Las contracciones musculares se deben a la frecuencia de impulsos eléctricos que envía el sistema nervioso, lo que produce un intercambio de iones a través de las membranas de las fibras musculares, generando las señales.

Sin embargo, aún cuando dos personas hacen el mismo movimiento -ya sea en piernas, brazos o manos- las señales se comportan de manera distinta; esto se debe a las diferencias entre condición física, edad, fuerza corporal o hasta el tipo de alimentación que llevan.

Puntualizó que la primera fase del proyecto consiste en una serie de pruebas físicas para la adquisición de las señales en el software “Electromiograf Signal Collector EMGSC” (Recolector de Señales Electromiográficas), desarrollado en la Universidad Autónoma de Querétaro. El sujeto de prueba debe realizar cinco repeticiones de 10 movimientos: posición inicial, pronación, supinación, extensión, flexión, desviaciones cubital y radial, pinzas fina y gruesa y expansión.

Para llevar a cabo estos ejercicios y detección de señales, se le coloca en el antebrazo próximo al codo, una pulsera integrada por ocho sensores que se pueden visualizar en el software como ocho canales diferentes. Hasta el momento se ha realizado la prueba en 50 individuos, dando como resultado 128 mil millones de puntos que están en proceso de clasificación.

El Dr. Aceves Fernández indicó que para que software tenga la mayor precisión posible se están probando 12 diferentes métodos de clasificación de inteligencia artificial, con el fin de asegurar cuál es el más efectivo o si es necesario combinar algunos de ellos.

Para clasificar las señales se utiliza el aprendizaje profundo (deep learning), un campo de la Inteligencia Artificial que utiliza las redes neuronales. Estas redes son sistemas de estructuración y procesamiento de datos entrenadas con algoritmos que buscan asemejarse al funcionamiento del cerebro humano para responder a determinados estímulos.

El deep learning es un tipo de aprendizaje no supervisado, es decir, que no necesita de un humano que ayude a la máquina o al software a “aprender” y “pensar” por sí mismo, mediante repeticiones y correcciones. Ejemplos prácticos de ello, son los sistemas de reconocimiento de voz de dispositivos móviles. Lo mismo sucede con el EMGSC, ya que aprende a distinguir un movimiento de otro.

El investigador UAQ explicó que con la clasificación de las señales mioeléctricas buscan incidir directamente en el desarrollo de aplicaciones centradas en áreas de la salud, principalmente. Una de ellas será en la rehabilitación muscular de pacientes que han sufrido problemas motrices causados por accidentes, enfermedades congénitas o afectaciones cognitivas adquiridas. El propósito es dar a los fisioterapeutas datos numéricos precisos que ayuden a la evaluación del paciente.

También podría implementarse en las ciencias del deporte, para evaluar y mejorar el desempeño de un atleta, mediante la corrección de movimientos o del entrenamiento. Mientras que una tercera aplicación estaría enfocada en hospitales inteligentes o centros geriátricos, para que los pacientes puedan controlar ciertos aparatos o dispositivos con movimientos musculares, sin necesidad de depender de un asistente. Por ello, ya están manteniendo pláticas con hospitales para llevar estos avances tecnológicos desarrollados en la UAQ.

El Dr. Marco Aceves detalló que el equipo de trabajo está conformado por estudiantes de la Maestría en Ciencias en Inteligencia Artificial y de la Maestría en Ciencias con línea terminal en Instrumentación y Control Automático; de las ingenierías Física y Biomédica y de la Licenciatura en Fisioterapia, además de la colaboración de un médico alemán experto en bioseñales.

Local

Karina Castro; esposa del gobernador de Querétaro, dio positivo a Covid-19

Después de algunos síntomas relacionados con el virus, decidió hacerse la prueba y hoy le anunciaron que salió el resultado positivo

Local

Revocarán cambio de uso de suelo de El Batán

“Vamos a emprender un par de acciones para lograr detener el ecocidio”, advirtió la diputada Beatriz Robles

Local

Reciben insumos médicos de la SEDENA

La 17/a Zona Militar recibió un vehículo militar de 6.5 toneladas con insumos destinados a hacer frente a la contingencia sanitaria

Justicia

Mansión en Florida puso en la mira a García Luna

El inmueble, localizado en una zona de lujo de Florida, fue comprada por empresarios ligados al exsecretario

Política

Conago se reunirá en medio de divisiones internas

Mañana, los gobernadores se juntarán con la titular de Segob para hablar de Covid, economía y T-MEC

Salud

Dona tu tos y ayuda a la detección de Covid-19

La UDG y el MIT compilan una base de datos de miles de toses para detectar el sonido del virus

Finanzas

Compiten cinco consultoras por contrato de SCT para revisar concesiones carreteras

La Secretaría de Comunicaciones y Transportes definirá el viernes a la empresa ganadora de la licitación

Finanzas

Acusan desde EU al gobierno de CDMX de expropiar concesión de taxímetros

Robert Lighthizer, el negociador de EU, atiende el caso relacionado con la filial Servicios Digitales Lusad

Mundo

París elimina el agua purificada

Desde 2010, la producción y distribución de agua en París, no es del sector privado, sino provista por un operador público